Resiliency And Security: Future-Proofing Our AI Future




from AI Trends https://ift.tt/35Mhfwy Allison Proffitt
https://ift.tt/2XY99Ow

By Allison Proffitt, AI Trends

On the first day of the Second Annual AI World Government conference and expo held virtually October 28-30, a panel moderated by Robert Gourley, cofounder & CTO of OODA, raised the issue of AI resiliency. Future-proofing AI solutions requires keeping your eyes open to upcoming likely legal and regulatory roadblocks, said Antigone Peyton, General Counsel & Innovation Strategist at Cloudigy Law. She takes a “use as little as possible” approach to data, raising questions such as: How long do you really need to keep training data? Can you abstract training data to the population level, removing some risk while still keeping enough data to find dangerous biases?

Stephen Dennis, Director of Advanced Computing Technology Centers at the U.S. Department of Homeland Security, also recommended a forward-looking posture, but in terms of the AI workforce. In particular, Dennis challenged the audience to consider the maturity level of the users of new AI technology. Full automation is not likely a first AI step, he said. Instead, he recommends automating slowly, bringing the team along. Take them a technology that works in the context they are used to, he said. They shouldn’t need a lot of training. Mature your team with the technology. Remove the human from the loop slowly.

Of course, some things will never be fully automated. Brian Drake, U.S. Department of Defense, pointed out that some tasks are inherently human-to-human interactions—such as gathering human intelligence. But AI can help humans do even those tasks better, he said.

He also cautioned enterprises to consider their contingency plan as they automate certain tasks. For example, we rarely remember phone numbers anymore. We’ve outsourced that data to our phones while accepting a certain level of risk. If you deploy a tool that replaces a human analytic activity, that’s fine, Drake said. But be prepared with a contingency plan, a solution for failure.   

Organizing for Resiliency

All of these changes will certainly require some organizational rethinking, the panel agreed. While government is organized in a top down fashion, Dennis said, the most AI-forward companies—Uber, Netflix—organize around the data. That makes more sense, he proposed, if we are carefully using the data.

Data models—like the new car trope—begin degrading the first day they are used. Perhaps the source data becomes outdated. Maybe an edge use case was not fully considered. The deployment of the model itself may prompt a completely unanticipated behavior. We must capture and institutionalize those assessments, Dennis said. He proposed an AI quality control team—different from the team building and deploying algorithms—to understand degradation and evaluate the health of models in an ongoing way. His group is working on this with sister organizations in cyber security, and he hopes the best practices they develop can be shared to the rest of the department and across the government.

Peyton called for education—and reeducation—across organizations. She called the AI systems we use today a “living and breathing animal”. This is not, she emphasized, an enterprise-level system that you buy once and drop into the organization. AI systems require maintenance, and someone must be assigned to that caretaking.

But at least at the Department of Defense, Drake pointed out, all employees are not expected to become data scientists. We’re a knowledge organization, he said, but even if reskilling and retraining are offered, a federal workforce does not have to universally accept those opportunities. However, surveys across DoD have revealed an “appetite to learn and change”, Drake said. The Department is hoping to feed that curiosity with a three-tiered training program offering executive-level overviews, practitioner-level training on the tools currently in place, and formal data science training. He encouraged a similar structure to AI and data science training across other organizations.

Bad AI Actors

Gourley turned the conversation to bad actors. The very first telegraph message between Washington DC and Baltimore in 1844 was an historic achievement. The second and third messages—Gourley said—were spam and fraud. Cybercrime is not new and it is absolutely guaranteed in AI. What is the way forward, Gourley asked the panel.

“Our adversaries have been quite clear about their ambitions in this space,” Drake said. “The Chinese have published a national artificial intelligence strategy; the Russians have done the same thing. They are resourcing those plans and executing them.”

In response, Drake argued for the vital importance of ethics frameworks and for the United States to embrace and use these technologies in an “ethically up front and moral way.” He predicted a formal codification around AI ethics standards in the next couple of years similar to international nuclear weapons agreements now.





Original article: Resiliency And Security: Future-Proofing Our AI Future
Author: